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1
Probability theory: basic notions

All epistemological value of the theory of probability is based on this: that large scale

random phenomenain their collective action create strict, non random regularity.
(Gnedenko and Kolmogorov, Limit Distributions for Sums of Independent
Random Variables.)

1.1 Introduction

Randomness stems from our incompl ete knowledge of reality, from the lack of information
which forbids a perfect prediction of the future. Randomness arises from complexity, from
thefact that causes are diverse, that tiny perturbations may result in large effects. For over a
century now, Science has abandoned L aplace’s deterministic vision, and has fully accepted
the task of deciphering randomness and inventing adequate tools for its description. The
surprise is that, after all, randomness has many facets and that there are many levels to
uncertainty, but, above all, that a new form of predictability appears, which is no longer
deterministic but statistical.

Financial markets offer an ideal testing ground for these statistical ideas. The fact that
a large number of participants, with divergent anticipations and conflicting interests, are
simultaneously present in these markets, |eads to unpredictable behaviour. Moreover, finan-
cial markets are (sometimes strongly) affected by external news—which are, both in date
and in nature, to a large degree unexpected. The statistical approach consists in drawing
from past observations someinformation on the frequency of possible price changes. If one
then assumes that these frequencies reflect some intimate mechanism of the markets them-
selves, then one may hope that these frequencies will remain stable in the course of time.
For example, the mechanism underlying the roul ette or the game of diceisobviously always
the same, and one expects that the frequency of all possible outcomes will be invariant in
time—although of course each individual outcome is random.

This ‘bet’ that probabilities are stable (or better, stationary) is very reasonable in the
case of roulette or dice;! it is nevertheless much less justified in the case of financial
markets—despite the large number of participants which confer to the system a certain

T The idea that science ultimately amounts to making the best possible guess of reality is due to R. P Feynman
(Seeking New Laws, in The Character of Physical Laws, MIT Press, Cambridge, MA, 1965).



2 Probability theory: basic notions

regularity, at least in the sense of Gnedenko and Kolmogorov. It is clear, for example, that
financial markets do not behave now as they did 30 years ago: many factors contribute to
the evolution of the way markets behave (development of derivative markets, world-wide
and computer-aided trading, etc.). Aswill be mentioned below, ‘young’ markets (such as
emergent countries markets) and more mature markets (exchange rate markets, interest rate
markets, etc.) behave quite differently. The statistical approach to financial marketsisbased
ontheideathat whatever evolution takes place, this happens sufficiently slowly (onthe scale
of several years) so that the observation of the recent past is useful to describe a not too
distant future. However, even this ‘weak stability’ hypothesis is sometimes badly in error,
in particular in the case of acrisis, which marks a sudden change of market behaviour. The
recent example of some Asian currenciesindexed to the dollar (such as the Korean won or
the Thai baht) isinteresting, since the observation of past fluctuationsis clearly of no help
to predict the amplitude of the sudden turmoil of 1997, see Figure 1.1.

- T l - T T
1 —
o8l
06— KRW/USD
04 1 I 1 I 1 I
9706 9708 9710 9712
12 T I T I T I

x(t)

| | =—= Libor 3M dec 92

| | | | | |
53206 9208 9210 9212

L [— S&P 500

o . | . | . |
%06 8708 8710 8712
t

Fig. 1.1. Three examples of statistically unforeseen crashes: the Korean won against the dollar in
1997 (top), the British 3-month short-term interest rates futuresin 1992 (middle), and the S& P 500
in 1987 (bottom). In the example of the Korean won, it is particularly clear that the distribution of
price changes before the crisis was extremely narrow, and could not be extrapolated to anticipate
what happened in the crisis period.



1.2 Probability distributions 3

Hence, the statistical description of financial fluctuations is certainly imperfect. It is
nevertheless extremely helpful: in practice, the ‘weak stability’ hypothesisisin most cases
reasonable, at |east to describe risks.f

In other words, the amplitude of the possible price changes (but not their sign!) is, to a
certain extent, predictable. It is thus rather important to devise adequate tools, in order to
control (if at al possible) financia risks. The goal of thisfirst chapter isto present a certain
number of basic notions in probability theory which we shall find useful in the following.
Our presentation does not aim at mathematical rigour, but rather tries to present the key
conceptsin an intuitive way, in order to ease their empirical usein practical applications.

1.2 Probability distributions

Contrarily to the throw of a dice, which can only return an integer between 1 and 6, the
variation of price of a financial asset’ can be arbitrary (we disregard the fact that price
changes cannot actually be smaller than a certain quantity — a ‘tick’). In order to describe
a random process X for which the result is areal number, one uses a probability density
P(x), such that the probability that X iswithin asmall interval of width dx around X = x
is equal to P(x) dx. In the following, we shall denote as P(-) the probability density for
the variable appearing as the argument of the function. Thisisapotentially ambiguous, but
very useful notation.

The probability that X is between a and b is given by the integral of P(x) between a
and b,

b
Pla< X <b) =/ P(x) dx. (1.2)
a
In the following, the notation PP(-) means the probability of a given event, defined by the
content of the parentheses ().

The function P(x) isadensity; in this sense it depends on the units used to measure X.
For example, if X isalength measured in centimetres, P(x) isaprobability density per unit
length, i.e. per centimetre. The numerical value of P(x) changesif X ismeasured ininches,
but the probability that X lies between two specific valuesl; and |, isof courseindependent
of the chosen unit. P(x) dx is thus invariant upon a change of unit, i.e. under the change
of variablex — yx. More generaly, P(x) dx isinvariant upon any (monotonic) change of
variable x — y(x): inthis case, one has P(x) dx = P(y) dy.

In order to be a probability density in the usual sense, P(x) must be non-negative
(P(x) = 0 for dl x) and must be normalized, that is that the integral of P(x) over the
whole range of possible valuesfor X must be equal to one:

/XM P(x)dx =1, (1.2

T The prediction of future returns on the basis of past returnsis however much less justified.
 Asset isthe generic name for afinancial instrument which can be bought or sold, like stocks, currencies, gold,
bonds, etc.



4 Probability theory: basic notions

where X, (resp. Xy ) isthe smallest value (resp. largest) which X can take. Inthe case where
the possible values of X are not bounded from below, one takes X, = —oo, and similarly
for xy. One can actualy always assume the bounds to be +o00 by setting to zero P(x) in
the intervals]— oo, Xm] and [Xu, oo[. Later in the text, we shall often use the symbol [ as
ashorthand for /.

An equivalent way of describing the distribution of X is to consider its cumulative
distribution P_(x), defined as:

X

P.X)=P(X<Xx)= f P(x')dx'. 1.3
P (x) takes values between zero and one, and is monotonically increasing with x. Obvi-
oudly, P_(—o0) = 0and P_(4o0) = 1. Similarly, one defines P (x) = 1 — P_(x).

1.3 Typical values and deviations

Itisquite natural to speak about ‘typical’ valuesof X. There are at | east three mathematical
definitions of this intuitive notion: the most probable value, the median and the mean.
The most probable value x* corresponds to the maximum of the function P(x); x* needs
not be unique if P(x) has several equivalent maxima. The median Xneg iS such that the
probabilities that X be greater or less than this particular value are equal. In other words,
P (Xmed) = P (Xmed) = % The mean, or expected value of X, which we shall note as
m or (x) in the following, is the average of al possible values of X, weighted by their
corresponding probability:

m

(x) = /xP(x) dx. (1.4)

For aunimodal distribution (unique maximum), symmetrical around this maximum, these
three definitions coincide. However, they are in general different, although often rather
closeto one another. Figure 1.2 shows an example of anon-symmetric distribution, and the
relative position of the most probable value, the median and the mean.

One can then describe the fluctuations of the random variable X: if the random processis
repeated several times, one expects the results to be scattered in a cloud of a certain ‘ width’
in the region of typical values of X. This width can be described by the mean absolute
deviation (MAD) Egs, by the root mean square (RMS) o (or, standard deviation), or
by the *full width at half maximum’ wy>.

The mean absolute deviation from a given reference value is the average of the distance
between the possible values of X and this reference value,

Eas = f [X — Xmed| P(X) dX. (1.5)

T One chooses as a reference value the median for the MAD and the mean for the RMS, because for a fixed
distribution P(x), these two quantities minimize, respectively, the MAD and the RMS.
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Fig. 1.2. The ‘typical value' of arandom variable X drawn according to a distribution density P(x)
can be defined in at least three different ways: through its mean value (x), its most probable value x*
or its median Xmey. IN the general case these three values are distinct.

Similarly, the variance (¢-2) is the mean distance squared to the reference value m,

o?=((x —m)? = /(x — m)2P(x) dx. (1.6)

Since the variance has the dimension of x squared, its square root (the RMS, o) gives the
order of magnitude of the fluctuations around m.

Finaly, the full width at half maximum wy,, is defined (for a distribution which is
symmetrical around itsuniquemaximum x*) suchthat P(x* £ (wy,2)/2) = P(x*)/2, which
corresponds to the points where the probability density has dropped by a factor of two
compared to its maximum value. One could actually define this width slightly differently,
for example such that the total probability to find an event outsidethe interval [(x* — w/2),
(x* +w/2)] isequal to, say, 0.1. The corresponding value of w is called a quantile. This
definition isimportant when the distribution has very fat tails, such that the variance or the
mean absolute deviation are infinite.

The pair mean—varianceis actually much more popular than the pair median-MAD. This
comes from the fact that the absolute value is not an analytic function of its argument, and
thusdoesnot possessthe nice propertiesof thevariance, such asadditivity under convolution,
which we shall discussin the next chapter. However, for the empirical study of fluctuations,
it is sometimes preferable to use the MAD; it is more robust than the variance, that is, less
sensitive to rare extreme events, which may be the source of large statistical errors.
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1.4 Moments and characteristic function

Moregenerally, one can define higher-order momentsof thedistribution P(x) astheaverage
of powers of X:

my = (X") = /x” P(x) dx. (1.7)

Accordingly, the mean m is the first moment (n = 1), and the variance is related to the
second moment (o2 = m, — m?). The above definition, Eq. (1.7), is only meaningful if the
integral converges, which requiresthat P(x) decreases sufficiently rapidly for large |x| (see
below).

From atheoretical point of view, the moments are interesting: if they exist, their knowl-
edge is often equivalent to the knowledge of the distribution P(x) itself.! In practice how-
ever, the high order moments are very hard to determine satisfactorily: as n grows, longer
and longer time series are needed to keep a certain level of precision on my; these high
moments are thus in general not adapted to describe empirical data.

For many computational purposes, it is convenient to introduce the char acteristic func-
tion of P(x), defined as its Fourier transform:

P(2) = / P (x) dx. (1.8)

The function P(x) isitself related to its characteristic function through an inverse Fourier
transform:

P(x) = % / e %P(2) dz. (1.9)

Since P(x) isnormalized, one aways has I5(0) = 1. Themomentsof P(x) can be obtained
through successive derivatives of the characteristic function at z = 0,
l

_(_\n
M =07 G

P(2)

(1.10)
z=0
One finally defines the cumulants ¢, of a distribution as the successive derivatives of the
logarithm of its characteristic function:

n

.p d -
¢ = (=0)" S5 109 P2

(1.12)
z=0
The cumulant ¢, isapolynomial combination of the moments m, with p < n. For example
C; = my — m? = o2, It isoften useful to normalize the cumulants by an appropriate power
of the variance, such that the resulting quantities are dimensionless. One thus defines the
normalized cumulants A,

An = Cn/o". (L12)

T Thisis not rigorously correct, since one can exhibit examples of different distribution densities which possess
exactly the same moments, see Section 1.7 below.
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One often uses the third and fourth normalized cumulants, called the skewness (¢) and
kurtosis (),

_fcmmy ok

= A
S 3 o3 g

3. (1.13)

The above definition of cumulants may look arbitrary, but these quantities have remark-
able properties. For example, as we shall show in Section 2.2, the cumulants simply add
when one sums independent random variables. Moreover a Gaussian distribution (or the
normal law of Laplace and Gauss) is characterized by the fact that all cumulants of order
larger than two areidentically zero. Hence the cumulants, in particular «, can beinterpreted
as ameasure of the distance between a given distribution P(x) and a Gaussian.

1.5 Divergence of moments — asymptotic behaviour

The moments (or cumulants) of a given distribution do not aways exist. A necessary
condition for the nth moment (m;,) to exist is that the distribution density P(x) should
decay faster than 1/|x|"** for |x| going towards infinity, or else the integral, Eq. (1.7),
would diverge for |x| large. If one only considers distribution densities that are behaving
asymptotically as a power-law, with an exponent 1 + w,

AL

|X|1+M

P(x) ~ for x — o0, (1.19)
then al the moments such that n > u are infinite. For example, such a distribution has
no finite variance whenever 1 < 2. [Note that, for P(x) to be a normalizable probability
distribution, the integral, Eq. (1.2), must converge, which requires i > 0.]

The characteristic function of a distribution having an asymptotic power-law behaviour
givenby Eq. (1.14) isnon-analytic around z = 0. The small z expansion containsregular
terms of the form z" for n < u followed by a non-analytic term |z|* (possibly with
logarithmic corrections such as |z|* log z for integer w). The derivatives of order larger
or egual to u of the characteristic function thus do not exist at the origin (z = 0).

1.6 Gaussian distribution

The most commonly encountered distributions arethe ‘normal’ laws of Laplace and Gauss,
which we shall simply call Gaussian in the following. Gaussians are ubiquitous: for
example, the number of heads in a sequence of a thousand coin tosses, the exact number
of oxygen molecules in the room, the height (in inches) of arandomly selected individual,

T Notethat it is sometimes « + 3, rather than « itself, which is called the kurtosis.



8 Probability theory: basic notions

are all approximately described by a Gaussian distribution.” The ubiquity of the Gaussian
can be in part traced to the central limit theorem (CLT) discussed at length in Chapter 2,
which states that a phenomenon resulting from alarge number of small independent causes
is Gaussian. There exists however alarge number of cases where the distribution describing
a complex phenomenon is not Gaussian: for example, the amplitude of earthquakes, the
velocity differences in aturbulent fluid, the stresses in granular materials, etc., and, as we
shall discussin Chapter 6, the price fluctuations of most financial assets.
A Gaussian of mean m and root mean square o is defined as:

exp (—M> . (1.15)

202

PG(X) = —
o

The median and most probable value are in this case equal to m, whereasthe MAD (or any
other definition of the width) is proportional to the RMS (for example, Eas = 04/2/7).
For m =0, al the odd moments are zero and the even moments are given by my, =
@2n-—1@2n—13)...0" =(2n - D!l o>

All the cumulants of order greater than two are zero for a Gaussian. This can be realized
by examining its characteristic function:

- o?7?
Pc(2) = exp <_T + imz) . (1.16)
Its logarithm is a second-order polynomial, for which all derivatives of order larger than
two are zero. In particular, the kurtosis of a Gaussian variableis zero. As mentioned above,
the kurtosisis often taken as ameasure of the distance from a Gaussian distribution. When
« > 0 (leptokurtic distributions), the corresponding distribution density hasamarked peak
around the mean, and rather ‘thick’ tails. Conversely, when k < 0, the distribution density
hasaflat top and very thintails. For example, the uniform distribution over acertaininterval
(for which tails are absent) has akurtosisk = — g. Note that the kurtosis is bounded from
below by the value —2, which corresponds to the case where the random variable can only
take two values —a and a with equal probability.

A Gaussian variableis peculiar because ‘ large deviations' are extremely rare. The quan-
tity exp(—x2/202) decays so fast for large x that deviations of a few times o are nearly
impossible. For example, a Gaussian variable departs from its most probable value by more
than 20 only 5% of the times, of more than 3o in 0.2% of the times, whereas a fluctuation
of 100 has a probability of lessthan 2 x 10-2; in other words, it never happens.

1.7 Log-normal distribution

Another very popular distribution in mathematical financeisthe so-called log-normal law.
That X isalog-normal random variable simply meansthat log X isnormal, or Gaussian. Its
use in finance comes from the assumption that the rate of returns, rather than the absolute

T Although, in the above three examples, the random variable cannot be negative. As we shall discuss later, the
Gaussian description is generally only valid in a certain neighbourhood of the maximum of the distribution.
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change of prices, are independent random variables. The increments of the logarithm of the
price thus asymptotically sum to a Gaussian, according to the CLT detailed in Chapter 2.
The log-normal distribution density is thus defined as:

2
L (180,
X~/ 2102 202

the moments of which being: m, = xJ&"*/2,

From these moments, one deduces the skewness, given by ¢3 = (€¥° — 3¢° +2)/
(” — 1)%2, (~ 30 for o < 1), and the kurtosis « = (%" — 46> + 6e°° — 3)/(e°” —
1)? — 3, (~ 1902 foro « 1).

In the context of mathematical finance, one often preferslog-normal to Gaussian distri-
butions for several reasons. As mentioned above, the existence of a random rate of return,
or random interest rate, naturally leads to log-normal statistics. Furthermore, log-normals
account for the following symmetry in the problem of exchange rates:* if x is the rate of
currency A interms of currency B, then obviously, 1/x is the rate of currency B in terms
of A. Under this transformation, log x becomes —logx and the description in terms of a
log-normal distribution (or in terms of any other even function of log x) is independent of
the reference currency. One often hears the following argument in favour of log-normals:
since the price of an asset cannot be negative, its statistics cannot be Gaussian since the
latter admitsin principle negative values, whereas alog-normal excludesthem by construc-
tion. This is however a red-herring argument, since the description of the fluctuations of
the price of afinancial asset in terms of Gaussian or log-normal statisticsisin any case an
approximation which is only valid in a certain range. As we shall discuss at length later,
these approximations are totally unadapted to describe extreme risks. Furthermore, even if
a price drop of more than 100% isin principle possible for a Gaussian process,’ the error
caused by neglecting such an event is much smaller than that induced by the use of either
of these two distributions (Gaussian or log-normal). In order to illustrate this point more
clearly, consider the probability of observing n times ‘heads’ in a series of N coin tosses,
which is exactly equal to 2-NC},. It isalso well known that in the neighbourhood of N /2,
2-NCJ, is very accurately approximated by a Gaussian of variance N/4; this is however
not contradictory with the fact that n > 0 by construction!

Finally, let us note that for moderate volatilities (up to say 20%), the two distributions
(Gaussian and log-normal) look rather alike, especially in the ‘body’ of the distribution
(Fig. 1.3). As for the tails, we shall see later that Gaussians substantially underestimate
their weight, whereas the log-normal predicts that large positive jumps are more frequent

Pin(X) =

(1.17)

T A log-normal distribution has the remarkable property that the knowledge of al its moments is not suffi-
cient to characterize the corresponding distribution. One can indeed show that the following distribution:
\/% x~Lexp[— % (logx)?][1 + asin(2z log x)], for |a| < 1, has moments which are independent of the value of
a, and thus coincide with those of alog-normal distribution, which correspondsto a = 0.

¥ Thissymmetry is however not always obvious. The dollar, for example, plays aspecial role. This symmetry can

only be expected between currencies of similar strength.

In the rather extreme case of a 20% annual volatility and a zero annual return, the probability for the price to

become negative after ayear in a Gaussian description is less than one out of 3 million.

w»
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Fig. 1.3. Comparison between a Gaussian (thick line) and alog-normal (dashed line), with
m = Xo = 100 and o equal to 15 and 15% respectively. The difference between the two curves

shows up in the tails.

than large negativejumps. Thisisat variance with empirical observation: the distributions of
absol ute stock price changes arerather symmetrical; if anything, large negative draw-downs

are more frequent than large positive draw-ups.

1.8 Lévy distributions and Paretian tails

Lévy distributions (noted L, (x) below) appear naturally in the context of the CLT (see
Chapter 2), because of their stability property under addition (a property shared by
Gaussians). The tails of Lévy distributions are however much ‘fatter’ than those of Gaus-
sians, and are thus useful to describe multiscale phenomena (i.e. when both very large
and very small values of a quantity can commonly be observed—such as personal income,
size of pension funds, amplitude of earthquakes or other natural catastrophes, etc.). These
distributions were introduced in the 1950s and 1960s by Mandelbrot (following Pareto)
to describe personal income and the price changes of some financial assets, in particular
the price of cotton. An important constitutive property of these Lévy distributions is their

power-law behaviour for large arguments, often called Par eto tails:
(1.18)

AL
L.(x) ~ TED for x — +oo,

where 0 < 1 < 2 is acertain exponent (often called «), and AX two constants which we
call tail amplitudes, or scale parameters: A. indeed gives the order of magnitude of the
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large (positive or negative) fluctuations of x. For instance, the probability to draw anumber
larger than x decreases as P-. (x) = (A, /x)* for large positive X.

One can of course in principle observe Pareto tails with © > 2; but, those tails do not
correspond to the asymptotic behaviour of aLévy distribution.

In full generality, Lévy distributions are characterized by an asymmetry parameter
definedas g = (A} — A)/(A} + A), which measures the relative weight of the positive
and negativetails. We shall mostly focusin thefollowing onthe symmetric case 8 = 0. The
fully asymmetric case (8 = 1) isaso useful to describe strictly positive random variables,
such as, for example, the time during which the price of an asset remains below a certain
value, etc.

An important consequence of Eq. (1.14) with u < 2 is that the variance of a Lévy
distribution is formally infinite: the probability density does not decay fast enough for the
integral, Eq. (1.6), to converge. Inthe case i < 1, the distribution density decays so slowly
that even the mean, or the MAD, fail to exist.! The scale of the fluctuations, defined by the
width of the distribution, isalwayssetby A= A, = A_.

Thereis unfortunately no simple analytical expression for symmetric Lévy distributions
L,.(x), except for u = 1, which corresponds to a Cauchy distribution (or L orentzian):

Li(x) = (1.19)

X2+ w2 A2’

However, the characteristic function of a symmetric Lévy distribution is rather
simple, and reads:

L.(2) = exp(—a,|z|"), (1.20)

where a,, is a constant proportional to the tail parameter A*:

A =pul(u— DM&L l<p<?2, (1.22)
and
A = (1— M)F(M)Maﬂ <l (122)

Itisclear, from (1.20), that inthe limit © = 2, one recovers the definition of a Gaussian.
When 1 decreases from 2, the distribution becomes more and more sharply peaked around
the origin and fatter in its tails, while ‘intermediate’ events lose weight (Fig. 1.4). These
distributionsthus describe ‘intermittent’ phenomena, very often small, sometimes gigantic.

The moments of the symmetric Lévy distribution can be computed, when they exist. One
finds:

(=v/u)
ul'(—=v) cos(rv/2)’

(Ix]") = (ay,)"* —1<v<p. (1.23)

 Themedian and the most probableval ue however still exist. For asymmetric L évy distribution, themost probable
value defines the so-called localization parameter m.
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—— J=2 (Gaussian)
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P

Fig. 1.4. Shape of the symmetric Lévy distributionswith © = 0.8, 1.2, 1.6 and 2 (thislast value
actually corresponds to a Gaussian). The smaller u, the sharper the ‘body’ of the distribution, and
the fatter the tails, asillustrated in the inset.

Notefinally that Eq. (1.20) does not defineaprobability distributionwhen u > 2, because
itsinverse Fourier transform is not everywhere positive.

In the case B8 # 0, one would have:
) = ep| -,z (1+iptenGun2) 2 )| a2 (122)

It is important to notice that while the leading asymptotic term for large x is given
by Eq. (1.18), there are subleading terms which can be important for finite x. The full
asymptotic series actually reads:

o0 n+1 n
Lﬂ(x)zz( )™ Hnﬂl"(l—i—n,u)sm(nun/Z) (1.25)
n=1 '

The presence of the subleading terms may lead to abad empirical estimate of the exponent
u based on afit of the tail of the distribution. In particular, the ‘apparent’ exponent which
describesthefunction L, for finite x islarger than p, and decreases towards . for X — oo,
but more and more slowly as u gets nearer to the Gaussian value u = 2, for which the
power-law tails no longer exist. Note however that one also often observes empirically
the opposite behaviour, i.e. an apparent Pareto exponent which grows with x. This arises
when the Pareto distribution, Eg. (1.18), isonly valid in an intermediate regime x <« 1/,
beyond which the distribution decays exponentially, say as exp(—ax). The Pareto tail is
then ‘truncated’ for large values of x, and this leads to an effective . which grows with x.
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Aninteresting generalization of the symmetric Lévy distributionswhich accountsfor this
exponential cut-off is given by the truncated L évy distributions (TLD), which will be of
much use in the following. A simple way to alter the characteristic function Eq. (1.20) to
account for an exponential cut-off for large argumentsisto set:

——T (1.26)

for 1 < u < 2. The above form reduces to Eq. (1.20) for « = 0. Note that the argument in
the exponential can also be written as:

LO() = exp [—aﬂ (a? + 22)" cos(uarctan(|z)/a)) — aﬂ} |

a, . oo
m[(aJrlz)“Jr(a—u) 2a"]. (2.27)

Thefirst cumulants of the distribution defined by Eq. (1.26) read, for 1 < u < 2:
alL

— * gt 2 =0 1.28
|cos:ru/2|a 3 ( )

C2=pu(n—1)

Thekurtosisk = A4 = C4/C5 isgiven by:

_ B= )2~ p)lcosmp/2|

Ag
pu(n — Dayor

(1.29)

Note that the case u = 2 corresponds to the Gaussian, for which A4, = 0 as expected.
On the other hand, when o — 0, one recovers a pure Lévy distribution, for which c;
and ¢, are formally infinite. Finaly, if « — oo with a,a#~2 fixed, one also recovers the
Gaussian.

As explained below in Section 3.1.3, the truncated Lévy distribution has the interesting
property of being infinitely divisible for all values of & and u (this includes the Gaussian
distribution and the pure Lévy distributions).

Exponential tail: a limiting case

\ery often in the following, we shall notice that in the formal limit © — oo, the power-
law tail becomes an exponential tail, if the tail parameter is simultaneously scaled as
A = (u/a)*. Qualitatively, this can be understood as follows: consider a probability
distribution restricted to positive x, which decays as a power-law for large x, defined
as:

A

P.(x) = m

(1.30)
This shape is obviously compatible with Eq. (1.18), and issuch that P.. (x = 0) = 1. If
A = (u/a), onethen finds:

1

P-(x) = m l:;exp(—ax). (2.3
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1.9 Other distributions (*)

There are obviously avery large number of other statistical distributions useful to describe
random phenomena. L et us cite afew, which often appear in afinancial context:

* The discrete Poisson distribution: consider a set of points randomly scattered on the
real axis, with a certain density w (e.g. the times when the price of an asset changes).
The number of points n in an arbitrary interval of length ¢ is distributed according to the
Poisson distribution:

(@f)"
n!

¢ The hyperbolic distribution, which interpolates between a Gaussian ‘body’ and expo-
nentia tails:

1
Pu(x) = PoKa(@x) exp —[ay/x3 + x?], (1.33)

where the normalization K1(aXg) is a modified Bessel function of the second kind. For
x small compared to Xg, P4(X) behaves as a Gaussian although its asymptotic behaviour
for X > Xg isfatter and reads exp(—a|Xx|).

From the characteristic function

aXoK1(Xov1+ @2)

P(n) =

exp(—wl). (1.32)

Pu(2) = : 134
H@ Ki(axo)v1+az (1.34)
we can compute the variance
2 XoKa(aXo)
- R 1.35
o Kl(OlXO) ( )
and kurtosis
Kz(axO)>2 12 Ka(arXo)
=3 * -3 1.36
( K1(aXo) axg Ki(axo) (1.36)

Note that the kurtosis of the hyperbolic distribution is always between zero and three.
(The skewness is zero since the distribution is even.)
In the case xg = 0, one finds the symmetric exponential distribution:

Pe(x) = % exp(—a|x|), (1.37)

with even moments my, = (2n)! o =2", which gives 0? = 2a~2 and ¥ = 3. Its character-
istic function reads: Pe(2) = o?/(a? + 2).
* The Student distribution, which also has power-law tails:
1 I'((1+w)/2) ar

= E T @eEr (39

which coincides with the Cauchy distribution for 4« = 1, and tends towards a Gaussianin
the limit 4 — oo, provided that a2 is scaled as . This distribution is usually known as
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Fig. 1.5. Probability density for the truncated Lévy (u = g), Student and hyperbolic distributions.
All three have two free parameters which were fixed to have unit variance and kurtosis. The inset
shows a blow-up of the tails where one can see that the Student distribution has tails similar to (but
dlightly thicker than) those of the truncated L évy.

Student’ s t-distribution with . degrees of freedom, but we shall call it simply the Student
distribution.

The even moments of the Student distribution read: my, = (2n — DT (/2 —n)/
I'(11/2) (@%/2)", provided 2n < u; and are infinite otherwise. One can check that
in the limit © — oo, the above expression gives back the moments of a Gaussian:
My, = (2n — 1! 02", Thekurtosis of the Student distributionisgivenby k = 6/(u — 4).
Figure 1.5 shows a plot of the Student distribution with « = 1, corresponding to
u = 10.

Note that the characteristic function of Student distributions can also be explicitly
computed, and reads:

1—u/2

Pu(2) = 1 (82K (e, (139)

where K, /> is the modified Bessel function. The cumulative distribution in the useful
cases u = 3and u = 4 with a chosen such that the variance is unity read:

1 1 X
Ps-(X) = > o [arctanx + m] (n=3 a=1), (1.40)
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and

1 3 1
Ps-(X)==—-u+-1% (u=4 a=+2), (1.41)
2 4 4
whereu = x/+/2 + x2.
¢ Theinver ssgammadistribution, for positive quantities (such as, for example, volatilities,
or waiting times), also has power-law tails. It is defined as:

n

Pr() = Sl (MX)OX — (_§). (1.42)

Its moments of order n < p are easily computed to give: m, = XjT'(x — n)/ T'(w). This
distribution falls off very fast when x — 0. As we shall see in Chapter 7, an inverse
gamma distribution and a log-normal distribution can sometimes be hard to distinguish
empiricaly. Finaly, if the volatility o2 of a Gaussian is itself distributed as an inverse
gammadii stribution, thedistribution of x becomesaStudent distribution—see Section 9.2.5
for more detalls.

1.10 Summary

» The most probable value and the mean value are both estimates of the typical values
of arandom variable. Fluctuations around this value are measured by the root mean
square deviation or the mean absol ute deviation.

* For some distributions with very fat tails, the mean square deviation (or even the
mean value) isinfinite, and the typical values must be described using quantiles.

» TheGaussian, thelog-normal and the Student distributions are some of theimportant
probability distributions for financial applications.

e The way to generate numericaly random variables with a given distribution
(Gaussian, Lévy stable, Student, etc.) is discussed in Chapter 18, Appendix F.
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